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Absence of Hysteresis at the Mott-Hubbard Metal-Insulator Transition in Infinite Dimensions
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The nature of the Mott-Hubbard metal-insulator transition in the infinite-dimensional Hubbard
model is investigated by quantum Monte Carlo simulations down to temperatereW /140 (W =
bandwidth). Calculating with significantly higher precision than in previous work, we show that the
hysteresis belowW'pr = 0.022W, reported in earlier studies, disappears. Hence the transition is found
to becontinuousrather than discontinuous down to at ledst 0.32571pr. We also study the changes
in the density of states across the transition, which illustrate that the Fermi liquid breaks down before
the gap opens. [S0031-9007(99)09321-7]

PACS numbers: 71.30.+h, 71.27.+a, 71.28.+d

The explanation of the nature of the Mott-Hubbardwhich provides the exact solution of the Hubbard model in
metal-insulator transition, i.e., the transition between ahe limit of infinite dimensionality (or coordination num-
paramagnetic metal and a paramagnetic insulator, is orteer) [11]. The complicated structure of the self-consistent
of the classic and fundamental problems in condenseDMFT equations makes an analytic solution intractable
matter physics [1-3]. Metal-insulator transitions of thisand hence one has to resort to approximate techniques.
type are, for example, found in transition metal oxidesln the last few years Georges, Kotliar, and collaborators
with partially filled bands near the Fermi level. For performed detailed investigations of the metal-insulator
such systems band theory typically predicts metallidransition scenario within the DMFT, by employing
behavior. The most famous example isQ4 doped iterated perturbation theory (IPT), exact diagonalization
with Cr [4]. In particular, in(V96Crp04)203 the metal- (ED) of small systems, quantum Monte Carlo (QMC)
insulator transition idirst order below 7, = 380 K [4], simulations and, af" = 0, a projective self-consistent
with discontinuities in the ratio of the lattice parameterstechnique (PSCT) [10,12]. While the overall transition
(the two phases being isostructural, however) and in thecenario reported by these authors indeed combines
conductivity, accompanied by hysteresis. essential features of the early approaches, they find the

The Mott-Hubbard transition is caused by electron-transition to bediscontinuousfor all finite temperatures
electron repulsion. The fundamental features of this tran < Tipr, with hysteresis involving coexisting metallic
sition are traditionally expected [1,4] to be explainable inand insulating states [13]. In their scenario the quasipar-
terms of the half-filled single-band Hubbard model [5-7],ticle weight disappears abruptly and the gap between the

Hubbard bands opens discontinuously as a function of

H=—1 Z CiJrUCj(r + Uznnnu ) U. Hence these authors argued that the experimentally
(ij).o i observed metal-insulator transition ¥,O3; can already
which describes electrons hopping on a lattice, interactingpe understood using a purely electronic correlation model.
with each other through on-site Coulomb repulsion. At T = 0, numerical renormalization group (NRG)

On the basis of this model the Mott-Hubbard transitionstudies [14] also found hysteresis and a value for the criti-
was studied intensively over the last 35 years. Importantal interaction ofU. = 5.86 (in our units, see below),
early results were obtained by Hubbard [8] with a Greerwhich agrees with the results of the PSCT [12]. Never-
function decoupling scheme, and by Brinkman and Riceheless, the existence of a preformed gap at 0 and the
[9] with the Gutzwiller variational method [6], both at corresponding separation of energy scales on which the
T = 0. Hubbard's approach yields a continuous splittingPSCT is based were recently disputed by one of us [15].
of the band into a lower and upper Hubbard band, buFinally, acontinuoustransition with a considerably lower
does not describe quasiparticle features. By contrast, th€, was found in a cluster approach [16] and, most re-
Gutzwiller-Brinkman-Rice approach concentrates on theently, within the random dispersion approximation (RDA
low-energy behavior, the transition being monitored by[2,17]). Clearly the Mott-Hubbard transition scenario is
the disappearance of the quasiparticle peak, but does nstill very controversial.
produce the upper and lower Hubbard bands. A unified It is the purpose of this paper to carefully reexamine
approach, treating both the low energy and high energyhe nature of the metal-insulator transition within DMFT
features on equal footing, has recently become possiblat finite temperatures. The examination of a transition re-
within the dynamical mean-field theory (DMFT) [10], gion requires a technique with sufficient precision. Since
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IPT is a ratherad hocapproximation scheme, its quali- most thoroughly tested technique presently available for
tative and quantitative accuracy is uncertain. On thehe solution of the DMFT equations. For comparison with
other hand, forT > 0, ED is limited to quite small sys- Ref. [10] we focus on the Hubbard model with a semiel-
tems &7 sites), so that finite-size effects may be con-liptical noninteracting density of states (DOS\(E) =
siderable. Indeed, although both techniques predict thg'4a — (E/r*)2/2#7t*) if |E| = 2r* and zero elsewhere.
metal-insulator transition to be discontinuous, tligian-  This DOS is realized, e.g., on a Bethe lattice with hop-
titative predictions differ substantially (see below). In ping amplitude scaled as= ¢*/+/Z, whereZ — = is the
fact, their respective regions of hysteresis do not discoordination number. In the following we sét= 1. In
play significant overlap. To resolve these discrepanciesrder to study the Mott-Hubbard transition, we restrict our
we perform finite-temperature QMC calculations, usingcalculations to the paramagnetic phase and exclude sym-
two different codes to reduce possible systematic errorsnetry breaking [18]. The solution of the Hubbard model
Although QMC is limited to not too lowl" values and s then determined by the following single-site effective
not too largeU values, it is still the best understood ar"d action [10,19-22]:

Seff = — foﬁ drdr’ ;CZ(T)QQ_I(T — ey (7)) + UfOB dT(CTT(T)CT(T) — %) (cf(r)cl(r) — %)

In particular, the on-site Green functia;(r — /) of | teresis found in Ref. [0y means of a standard QMC al-
the Hubbard model is identical to the single-site Greergorithm with a standard convergence criterion. However,
function G(r — 7/) = —(T c(r)ct(7)))s,,, which is as will be shown below, in the case of the Mott-Hubbard
implicitly determined byS.;; and the self-consistency transition the criteriom; = 1072 is not sufficient to guar-
relation Gyliw,) = [iw, + n — G(iw,)]”!, where antee convergence to the true solution.

w, = 2n + 1)aT. The key point in DMFT is thus For this we investigate the stability of the two solutions
the accurate calculation of the single-site Green functiondependently under further iterations. As an example
G(7). For this purpose we use QMC simulations, whichwe consider the solution & = 1/20 andU = 5. The
are essentially exact though computationally expensivelata for A7 = 0.3 are presented in the inset of Fig. 1.
[21,23]. After discretizing the imaginary time intd  In order to obtain maximum accuracy we use a large
time slices of lengthA7 = B/A and performing a number of sweeps per iteratiod ¢ 3 - 10°). We find
Hubbard-Stratonovich transformation which introduceshat (i) both solutions atU = 5 in Fig. 1 are unstable,
auxiliary Ising spins, the DMFT equations are solved by(ii) a new stable solution is reached after approximately
iteration. The number of proposed flips of Ising spins20 more iterations, and (iii) the solution with the larger
(“sweeps”) per iteration will be important here. Eachnumber of sweeps (solid dots) reaches equilibrium sooner
iteration has as input the “old” self-energ¥.q(iw) and has smaller fluctuations (a larger number of time
and as output a “new” self-energy,.w(iw). The rate slices has the same effect). During the iteration progess
of change in the iteration procedure is measured by

=AY, S, — Shewlio,)l. Experience
shows that, for most purposes (e.g., calculation of 5038
thermodynamic quantities outside the critical regime), 0.1}

convergence is reached i = 1073. Typically, A7

ranges from 0.1 to 0.4 for all' = 0.1. Physical prop-

erties are obtained by extrapolation of the simulation

results to the limitAr — 0. For the Hubbard model at

half-filling, there is no “minus-sign problem.” A
We found that straightforward implementation of the 0.05 |

QMC algorithm withn = 1073 indeed leads to the ap- o increasing U

parent convergence ko solutions, i.e., to hysteresis. As O decreasing U

an example, we present results for the double occupancy | fully converged

D = (nyny) in Fig. 1. The upper curve (solid dots)

shows results for increasing coupling strength, where we

use the self-energy calculated for interactinas input 0

for the calculation forV + AU (hereAU = 0.3). Simi- U

larly, the lower curve (open dots) shows results for de-

creasingU. At eachU value the iteration procedure was FIG: 1. QMC results for the double occupangy at T =

. o r . 1/20 using the criterionp = 1073, The error bars are smaller
3
terminated as soon as the conditign= 107" was saliS-  han the data points. All lines are guides to the eye only.

fied, which typically happens after only a few iterations. |nset: Vanishing of the hysteresis as a function of the number
In this way we are able tqualitatively reproduce the hys- of further iterations af” = 0.05, U = 5, andA7 = 0.3.
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fluctuates aroundn) = 4 X 10~* and gives essentially [27]. BeyondU, the system remains semimetallic until at
no information about the distance from equilibrium. WeU, > U. (here,U, = 5.0) an actual gap opens (within nu-
obtained similar results for a dense grid of other values fomerical accuracy). In order to better understand the region
U andAr. Extrapolating toA7 — 0 and combining the U. < U < U, we studied the temperature dependence of
results for variousU/, we obtain a smooth curv®(U)  the screened local moment (inset to Fig. 4) and of the spec-
(dashed curve in Fig. 1yithout hysteresis. The same trum (not shown) aty = 4.8, starting from7 = 1/20.
happens at highefl(= 1/10, 1/13, and1/15) and also Upon increase df the incomplete gap and the screened lo-
at lower C = 1/30 andT = 1/35) temperatures. cal moment remain essentially unchanged. Upon decrease
We also studied the quasiparticle renormalization factoof T the central peak and the Fermi-liquid behavior are
Z = m/m"* and the compressibility at various tempera- rapidly restored, and the screened moment falls dramati-
tures. After 15-25 further iterations, none of these quantically. The incomplete gap and tHe independence of
ties shows hysteresis any more. The resultdfer 1/15  the screened moment imply that fof. < U < U, there
are shown in Fig. 2. We locate the Mott-Hubbard transi-are few electronic states at the Fermi energy to screen the
tion at the interaction strengtii. whereZ(U) andx(U) es-  spins. The behavior in this region can be interpreted as
sentially vanish. The resulting phase diagram is plotted iremanating from a quantum critical point&at= 0, charac-
Fig. 3, where the corresponding IPT and ED results [10,24{erized by a vanishing DOS at the Fermi lewv&l0) = 0.
and theU, values atl’ = 0 obtained by PSCT [12], NRG The depletion of screening states obtains a natural inter-
[14], and RDA [17] are also shown. There is a clear quanpretation in terms of Nozieres’ “exhaustion” scenario [28],
titative and qualitative discrepancy between our numeriwhich was recently found to be realized in the periodic
cally exact QMC data and both the ED and the IPT resultsAnderson model [29].
According to IPT, the transition beloW = Tpr = 0.088 To clarify the influence of band-structure effects we
is discontinuous. By contrast, we find that the transitionalso performed calculations for laypercubic latticein
from the metal to the insulator isontinuous[25] down d = « including next-nearest-neighbor hopping ampli-
to at leastl’ = 1/35 = 0.325 Typr. The reentrant behav- tudes:’ = " /\/2d(d — 1) [30,31]. Choosing”*/t* < 0
ior in Fig. 3 (atU = 4.7 as a function ofT') is due to in order to obtain a finite lower band edge, we find the
the higher entropy of the insulating phase as compared taysteresis effects to be strongly suppressed by frustration,
the metal. e.g., no initial hysteresis was observed féyr* < —0.25
More information concerning the Mott-Hubbard transi- The phase diagram far = 0, previously obtained [32]
tion can be obtained from the DOS, which we calculatedising QMC and perturbation theory iy (NCA), is quali-
from the converged data for the Green function using theatively similar to that for the Bethe lattice in Fig. 3.
maximum entropy method (MEM [26]). Our results for  In summary, we demonstrated that, for temperatures
the DOS as a function of/ at 7 = 1/20 are presented down to Tmin = 1/35 = 0.325 T1pr, the coexistence
in Fig. 4. Upon increase df, the DOS develops a well- region characteristic of a first-order metal-insulator
defined central peak and shoulders, with the peak pinned
at its Fermi liquid value. The peak rapidly collapses

atU = U, (here,U, = 4.8), leaving an incomplete gap 0.4 [ —a— ]
012 ‘ p
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FIG. 3. Phase diagram of the Hubbard model (paramagnetic
phase only). Solid squares: continuous metal-insulator transi-
tion calculated with QMC (error bars include both the statisti-
cal errors and the uncertainty . due to finite temperatures).

6 The dotted line is a guide to the eye only. Broad horizontal
lines: coexistence region within ED [10,24]. Dashed lines: co-
existence region within IPT; the line of first-order transitions

FIG. 2. Compressibility« and quasiparticle renormalization (full curve) ends atf'pr (solid circle) [10]. The shaded area

factorZ = m/m* vs U for T = 1/15. All lines are guides to is a crossover region. Also shown are the values from

the eye only. PSCT/NRG (X) and RDA Q).
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